Límite de Chandrasekhar
El límite de Chandrasekhar , o masa de Chandrasekhar , es el límite superior que puede alcanzar la masa de un cuerpo formado por materia degenerada , es decir, un estado denso de la materia formado por núcleos atómicos sumergidos en un gas de electrones . Su valor representa la masa límite no giratoria que puede oponerse al colapso gravitacional , soportada por la presión de degeneración de los electrones; su valor corresponde a 3 · 10 30 kg, una masa equivalente aproximadamente a 1,44 veces la del Sol ; [1] [2] generalmente se indica con el símbolo y representado esquemáticamente en la forma:
Dónde está es la masa solar.
Este límite fue calculado por primera vez por el físico indio Subrahmanyan Chandrasekhar, de quien más tarde recibió su nombre.
Dado que las enanas blancas están compuestas de materia degenerada, ninguna enana blanca no giratoria puede tener una masa mayor que el límite de Chandrasekhar.
Este límite es análogo al límite de Tolman-Oppenheimer-Volkoff para las estrellas de neutrones .
Significado de la

Normalmente, el calor generado por una estrella soporta el peso de su atmósfera. Cuando la estrella se queda sin combustible nuclear , las capas externas colapsan sobre el núcleo. Si, en este punto, la estrella tiene una masa menor que el límite de Chandrasekhar, el colapso se detiene por la presión de los electrones degenerados , y el resultado es una enana blanca estable.
Si una estrella incapaz de producir más energía (este no es, en general, el caso de las enanas blancas) tiene una masa mayor, la presión de degeneración de los electrones no es suficiente para contrarrestar la gravedad; los protones se fusionan con los electrones a través del proceso de captura de electrones , liberando neutrinos y la estrella se convierte en una estrella de neutrones . Dado que los neutrones tienen una masa aproximadamente 1800 veces mayor que la de los electrones, adquieren energía más lentamente y son capaces de resistir la fuerza gravitacional hasta el límite de unas 2,5 masas solares.
Más allá de este segundo límite, la estrella colapsa en un agujero negro .
Aproximación relativista
El límite de Chandrasekhar surge de los efectos de la mecánica cuántica al considerar el comportamiento de los electrones que proporcionan la presión de degeneración necesaria para sostener la enana blanca. De hecho, los electrones son fermiones (es decir, sujetos a las estadísticas de Fermi-Dirac ) y, debido al principio de exclusión de Pauli , no pueden ocupar el mismo estado cuántico . Cuando un gas de electrones se enfría, los electrones no pueden ocupar todo el estado de energía mínima ; la mayoría de ellos estarán en estados más energéticos, creando una presión cuya naturaleza es puramente mecánica cuántica.
Aproximación clásica
En la aproximación "clásica" , independientemente de la relatividad, una enana blanca puede ser arbitrariamente grande, con un volumen inversamente proporcional a su masa. En cálculos relativistas, las energías en las que se encuentran los electrones debido a la presión de degeneración se vuelven significativas en relación con su masa en reposo (en lugar de insignificantes como suele ser); su velocidad se aproxima a la de la luz, haciendo inadecuado el modelo clásico y obligando a recurrir a la relatividad especial . El resultado es que en el modelo relativista emerge un límite a la masa permitida para un cuerpo con simetría esférica , autogravitante y sostenido por la presión de la degeneración.
Si, dentro de un sistema binario estrecho, una enana blanca recibe materia de su estrella compañera, puede exceder el límite de Chandrasekhar. La enana blanca colapsa repentinamente y explota como una supernova de tipo I.
Valor de
En el cual:
- es la constante de Planck
- es la velocidad de la luz
- es la constante gravitacional universal
- es la masa en reposo del protón
- es el número de nucleones por electrón y es aproximadamente 2.
También puede utilizar esta forma alternativa:
donde aparece la masa de Planck , .
Nota
- ^ Hans A. Bethe y Gerald Brown , Cómo explota una supernova, páginas 51-62, en Formación y evolución de agujeros negros en la galaxia: artículos seleccionados con comentarios , Hans Albrecht Bethe, Gerald Edward Brown y Chang-Hwan Lee, River Edge, Nueva Jersey: World Scientific: 2003. ISBN 981238250X .
- ^ Mazzali, PA; K. Röpke, FK; Benetti, S.; Hillebrandt, W., A Common Explosion Mechanism for Type Ia Supernovae , en Science , vol. 315, n. 5813, 2007, págs. 825–828, DOI : 10.1126 / science . 1136259 , PMID 17289993 .
enlaces externos
- ( EN )Límite de Chandrasekhar , en Encyclopedia Britannica , Encyclopædia Britannica, Inc.
Control de autoridad | GND (DE) 4805871-3 |
---|